
TeamEthno-online Issue 2, June 2006, 58-66

 58

An Annotation Scheme to Support Analysis of
Programming Activities

Sebastian Jekutsch

AG Software Engineering

Freie Universität Berlin, Germany

jekutsch@inf.fu-berlin.de

Abstract

This paper describes a framework for partitioning programming sessions – including coding,

browsing, thinking, reading, testing, etc. – in programming episodes of five seconds’ to a few minutes’

duration. It is based on interpreting excerpts of a session via annotating activity types, properties,

triggering events, and focus of attention. The set of predefined activities is grounded on about three

hours of actually observed episodes. The level of abstraction is well above single keystrokes but below

what is usually called programming cycle, i.e. phases of changing and testing code. The concepts of

the framework are described using real world examples. The annotation scheme has been developed to

aid in detecting behavioural patterns, especially for analysing defect injection episodes.

Keywords: coding scheme, ethnographic studies, actual process, programming activities, software

engineering

1. Introduction
Research on actual software process [1] focuses on observing, describing, and analysing software

development on an empirical level. It naturally starts bottom-up, examining in the first place micro-

activities of single developers performing a subtask step-by-step. This paper presents a set of activity

types and its properties which are meant to be atomic, i.e. to analyse actual programming processes

there will be no need to examine even more detailed actions. The activity types are currently restricted

on mainly source code changing and closely related activities (see section 3), although its concepts are

general enough for describing changes on every kind of software artefact. Only single programmers

are considered. No verbal communication, coordination, or discussion (which of course form an

important part of software development) nor requirement elicitation, planning, or administrative tasks

have been considered in the scheme.

The annotation scheme has been developed while manually analysing 2 hours and 46 minutes of

programming sessions both taken from a mid-sized semantic web project [2] and very small-sized

ACM programming contest training units [3].

Analysing actual processes means annotating excerpts of programming sessions (available as video

recordings) with operation types, e.g. programmer activities. The result is called an episode. Episodes

are occurrences of operations as well as interpretations of excerpts. Figure 1 illustrates these

associations using an UML class diagram notation.

Figure 1 : Episode = Interpreted Excerpt as well as occurrence of an Operation

The concepts of the annotation scheme are explained using the following running example, a small

code change: The programmer adds a new method called „getDetailsDescriptions()“ to class „Base“

via copying previously written code and altering it afterwards. A syntactical defect (unknown type

name) has been introduced. Figure 2 shows five states during this episode. Only the covered part of

class “Base” is visible.

Interpretation Occurrence

TeamEthno-online Issue 2, June 2006, 58-66

 59

 (a)

 (b)

 (c)

 (d)

 (e)

Figure 2 : Video stills from a Java code change: The programmer (a) positions cursor, (b) selects code

part to be copied, (c) pastes code below the original, (d) changes parameter type, (e) changes return

type. The editor (Eclipse) continuously highlights line of cursor (light grey), string matches of

expression at position of cursor (yellow), and warnings/errors (curly underlining)

TeamEthno-online Issue 2, June 2006, 58-66

 60

Figure 60 shows the complete UML class model of the representation of episodes in the annotation

framework. Attributes are omitted. The following sections, which introduce the classes, will regularly

refer to this model.

Figure 3 : General annotation model

The development of annotation (or coding) schemes is common practice in qualitative research to

analyse documents, transcripts, interviews, or videos [4][5]. Only few research papers have been

published on programming, see for example [6] on code comprehension. Detailed studies of

programming sessions have been undertaken in research on “Psychology of Programming” [7][8][9]

as well, but none fits the level of detail realized in the framework presented here.

All annotation concepts will be explained in more detail in sections 2 to 6. The paper concludes with

an outlook on applications and planned work.

2. Excerpts
The annotation scheme assumes that any programming session can be split into small chunks of

interesting and interpretable excerpts. The name “excerpt” is actually motivated by the analysis of

video material (screen capture plus sound plus face video) of programmers at work. An excerpt is a

time frame in which exactly one operation happens. (Operations are introduced in the next section.) In

other words, it is the longest possible sequence without any relevant change of situation or status, i.e.

no influencing event (like interruptions), no mental state change (like changing interest), and no

second action (like switching from writing to reading) happens during an excerpt. Excerpts can consist

of video clips, session transcripts, or a set of basic, technical events recorded automatically [10].

Excerpts have properties of time, duration, and programmer name.

The 2:46 hours of videos analysed by now have an average excerpt duration of 27 seconds ranging

from two seconds to exceptional two minutes. The running example (Figure 1) is 16 seconds long. The

median length is 15 seconds, because only 16 excerpts last for more than a minute. Theoretically,

excerpts may overlap each other although this is not the case for the excerpts annotated so far.

3. Operations and Categories of Operations
Operations are interpretations of excerpts, i.e. they simply denote “what is going on”. Operations

(more precisely: operation types) are mostly activities of the programmer, including non-actions or

mental actions like pausing or thinking. Throughout this paper all operations are activities of this kind.

For extensibility, other operations may be introduced as well, for example programming phases

summarizing tenths of programming activities.

Categories are groups of operations which form a hierarchy. Activities define the highest level

category of operations. Sub-categories are core activities, inner activities and batch activities.

TeamEthno-online Issue 2, June 2006, 58-66

 61

Core Activities

Core activities are further classified in more detailed categories. The most important kind of core

activity is the code change. The annotation scheme identifies the following different ways of code

change
1
:

• Advancement: In an ideal world, a programmer always makes progress in the sense that she adds

functionality without the need to ever re-examine or extending what she did. In this case, all

activities would be “Advancements”, which is adding code as planned and making linear progress

towards the next sub-goal. Naturally, starting with a new program or a new module is always

Advancement. This does not mean that the code is correct or that it will never be altered or

deleted. The running example episode is of the Advancement kind: new code is added to add

functionality.

• Betterment: A “Betterment” is an unintentional change of previously written code which initially

was assumed to be correct, complete, and appropriate. In most cases, simply a defect is removed. It

is not a complete redesign of code due to new functional or non-functional requirements (which

would be Displacement). Instead, the programmer could have done it correct in the first place, i.e.

Betterments are avoidable in principle.

• Complement: In comparison to Advancements which explore new territory, and in comparison to

Betterments which only restore initial intentions, “Complements” are planned code changes which

generalize previously functional code parts, for example: The change of a String attribute type to a

list of Strings because new functionality requires a more general data structure. Someone who

builds up code evolutionary (starting with a simple, running version and extending it iteration per

iteration) is likely to perform many Complements.

• Displacement: A “Displacement” is some removal of code which is not useful or necessary

anymore because of a new design, dead code, change of mind, new insights, better plan, or

obsolete prototypical code.

• Embellishment: Beautifying or refactoring code without changing its semantics is called

“Embellishment”. This is often done occasionally, and sometimes in parallel to some other

activities like thinking or reading code.

Code documentation would be a sixth type of code change. Although not investigated by now, these

code changing activities may as well be used for design documents or the like. It may have become

apparent that the code changes differentiated here are not based on programming language constructs

(e.g. no "new parameter introduced" or "variable name changed") but are related to programming

progress and how the actual (mostly unintentional) planning process of writing/altering the document

looks like [8].

It is an open issue to describe these activities more formally based on text/code manipulations.

Besides changing code, other core activity categories – which will not be explained in detail for lack

of space – are:

• Browsing, in code or in code documentation, for a class, an operator, a method, etc.

• Reading: Examining requirements; Reorientation in code (e.g. after interruption); Reviewing code

just written

• Thinking about the next step; Thinking about an event (see section 6) which just happened;

Thinking about current programming problem
2
.

• Pausing work because of other interests, or waiting for s/o or s/th. Additionally, all “doing nothing

visible” activities without any clear explanation are annotated as Pausing.

1
 In each category the names of the operations were chosen to be equal in style but different in the first letter to

ease manual annotation of coding sessions. This has resulted in some unusual but catchy terms.

2
 Of course, it is not easy to tell one from the other.

TeamEthno-online Issue 2, June 2006, 58-66

 62

• Other kind of Work, like talking to others, generally using the programming environment or

operating system, using the program during test, delivering code to version control, preparing test

data, etc. These activities definitely require more elaboration which hasn’t been possible by now

because of a lack of occurrences in the available videos.

The set of core activities (like any other category of operations) may and will be expanded.

Among the core activities, mostly Advancements have been observed. This is clearly a consequence of

the fact that projects at the start of development or small programming tasks have been examined.

48% of the core activities are code changes (56% Adv., 30% Bet., 10% Dis., 4% Com., 0% Emb.),

thinking 21%, reading 12%, pausing 7%, and browsing 4%. The surprisingly low amount of browsing

may be due to the good knowledge of the programmers and the small size of the projects. Note that

only the mere occurrences are counted, not their duration. Pausing and browsing for example have a

comparatively long duration and therefore allocate a larger amount of time.

Inner Activities

In many cases, a programmer does not continuously perform core activities. Often other small inner

actions are done along the way during a main activity. These range from quick corrections of typos

(called Re-Spell here) to typing isolated code fragments while unconsciously thinking hard about a

problem (Plan-Aloud). So far, the following inner activities have been defined:

• Tag-Along (the term is taken from [9]) is a quick change of code just written, for example to alter

the name of a recently introduced variable, although the programmer is already concerned with the

next sub-goal. It can also be any other quick and short code maintenance step.

• Work-Over is a quick Betterment, for example changing the termination conditional of a loop

while thinking about the loop’s body.

• Dust-Off is a small Displacement (just like Work-Over is a small Betterment).

• Look-up is Reading and/or Browsing the code or documentation at a different place than the focus

of the current main core activity.

• Spruce-Up is a quick Embellishment, for example correcting indentation.

• Re-Spell and Plan-Aloud as described above

Since these inner activities mostly take only few seconds of an excerpt, they are annotated in addition

to a core activity. This means that the core activity (e.g. Advancement) includes one or more inner

activities (e.g. Re-Spell) without precisely specifying the point(s) of time. As a result, an excerpt may

be associated with more than one operation, leading to different episodes. Theoretically, it would be

possible to annotate all single inner activities for new (small) overlapping excerpts, but this would be

unpractical in case of manual annotation.

Batch Activities

Batch Activities are initiated but not executed by the programmer. It is Compilation of the code and

Building the code as well as Running or Debugging the program, i.e. testing it. Debugging simply

means to run the program in debug mode. The full debugging activity has not been investigated in

more depth so far although it is an interesting and important one, including comprehension and defect

removal. In fact, defect removal is annotated just like any other code change, although it probably will

contain much more Betterments than Advancements.

4. Qualities and Characteristics
Operations have optional qualities. For example, code changes can be performed in different speeds.

The qualities’ values are called characteristics, i.e. speed may have the characteristics “fast” and

“slow”. Figure 3 shows that qualities are bound to categories, i.e. each operation in a category may

have characteristics of the category’s qualities. Qualities are inherited along the category hierarchy.

Qualities and their characteristics allow to specify an operation more precisely. Here are the ones

which have been most frequently used by now:

TeamEthno-online Issue 2, June 2006, 58-66

 63

• For code changes, the source denotes where the written code originally came from. The usual case

is “brain“, but copy (-paste) from other code locations or documentation as well as type writing are

possible as well.

• For core activities, the speed can be qualified as mentioned. The characteristics are faster and

slower, i.e. it is related to former speed and not interpreted in absolute quantities because it is

important to detect behavioural changes.

• For code changes, the finish quality expresses whether the code has been left incomplete at the end

of the code change – for example “if (count =”, maybe caused by an interruption – or open. Open

code locations are syntactically well formed but obviously not finished, like empty brackets in “if

(count == 0) { }”. Often locations are left open when the train of thought found a more important

or task to be completed before.

• For all activities, the pressure (for example time or success pressure) on the programmer can be

characterized as higher. This quality has been included because the annotation scheme has mainly

been introduced to investigate coding episodes in which defects have been injected. See section 8

for more on applications of the coding annotation scheme.

5. Foci and References
Operations are not only performed by the programmer but also performed on something, i.e. the object

or focus of operation. The most important focus is the code (or document) location. A code location is

rarely an entire code file but mostly finer grained. In fact, the term is not defined in any way. What is

actually called a code location depends on the level of investigation. So far, locations of class member

granularity (methods, fields) have been used.

An episode may refer to more than one code location focus. A typical example is that of an

Advancement activity creating a method (focus 1) and therefore extending a class (focus 2). Creates

and extends are two types of references (Figure 3: Reference is an association class between Episode

and Focus) for code locations, the others being changes, discards, and copies. The latter has been

introduced to allow a more precise specification of code changes with Quality source = copy.

Foci are used to group operations of similar interest. For example, by using code locations coding

activities can be selected for each location separately. Figure 4 visualizes about three minutes of a

coding session consisting of nine episodes
3
. The blocks and their colour represent the kind of core

activity, namely Advancement as green, Betterment red, Browsing yellow, and Thinking in white.

Figure 4 : Timeline visualization of some episodes

Using the references to the annotated code locations, the possibilities of exploratory analysis of the

data are raised. Figure 5 separates the locations L1 to L4. Now it is possible to see that for example L1

has subsequently been corrected after advancing to other locations. This probably forms a typical

behavioural pattern: Initially coding a new method and later on altering the implementation to the

needs of other methods which call the initial one.

The concept of a focus is used in a general way as a kind of recurring theme during programming.

Besides locations, defects are also annotated as foci
4
. The typical references on defects are introduces,

detects, and resolves. Defects are not code locations (although they often can be clearly located) but

simple identities which allow for analysis of a defect’s life cycle. It results in episodes like

3
 Taken from the same video as the running example. Actually, block no. 9 furthest to the right is the example.

4
 This again was motivated by the research on causes for programming errors [11].

TeamEthno-online Issue 2, June 2006, 58-66

 64

“Complement in slower speed which changes method firstPass(), changes class CLIParser, and

introduces defect #3”.

Other kinds of foci can be introduced as well. One such candidate is the current intention or sub-goal

of the programmer in terms of the problem to be solved.

Figure 5 : Timeline visualization of some episodes grouped by code location

6. Events
Events represent some sort of impact on the programmer’s behaviour. It occurs at a point of time, the

juncture: at the beginning or at the end of an episode. The impact results at least in a change of

operation. It is not a mental event but an event from outside, probably as an effect of the programmer’s

activity. Interesting events are:

• Interruption: The programmer has been interrupted from work and is forced to switch context.

Interruptions have an important impact on the performance of programming [13].

• Result of compilation: The compiler presents a list of warnings and errors which usually catches

the programmer’s interest immediately. This is even the case for simple warnings by modern

syntax-driven editors. A compilation result can be error, warning, or no complaint, which actually

results in three different events.

• Result of test: After the program has been tested, its results can be failure or no failure.

7. Episodes and Schema Extensions
All concepts mentioned in sections 2 to 6 are associated with an Episode, which is the core kind of

annotation concept. Annotating programming sessions simply means creating Episodes which contain

an Operation, an Excerpt, probably some Characteristics, and optional Foci, triggered by or resulting

in an Event. Capturing actual programming processes therefore means “to recognize episodes”.

The example introduced in Figure 2 is a single episode. The object diagram of this example based on

the general model (Figure 3) is shown in Figure 6. In a semi-formal notation it is: “Advancement

{source = copy} extends class Base, creates method getDetailsDescriptions2(), copies method

getDetailsDescriptions(), introduces aDefect”
 5

Instances based on the generic model can be divided into two levels of abstraction:

• Schema: The schema part of the annotation objects contains useful concepts for describing every

programming session. It forms the vocabulary. It consists of the operations (including categories,

qualities, and characteristics), events (including junctures), reference types, and the associations to

each other. The set of schema objects can be extended as soon as new insights are gained as to

which operations are important to analyse.

5
 The newly created method has later been renamed to getDetailsDescription2(), i.e. the “2” has been added. To

remain the identity of this code location, it is consistently named even in pre-renaming episodes.

TeamEthno-online Issue 2, June 2006, 58-66

 65

• Actual process: The actual process part of the objects contains concepts of an observed

programming session. They form the sentences, based on the vocabulary. It consists of the

episode, focus, and excerpt objects, as well as the associations to each other and to the schema

objects.

The model itself (i.e. the set of classes in Figure 3) contains general, constant concepts about

working/writing episodes in general. It therefore serves as a grammar to the annotation scheme.

Figure 6 : Object diagram for example episode

8. Conclusions, Applications, and further Work
An annotation (or coding) scheme for programming sessions has been presented. Although it is only

grounded on less than three hours of video data, more than 300 excerpts of it have been analysed and

interpreted. The annotation scheme evolved during its usage and became quite stable at the end, yet

the schema part will likely to be extended in the future.

Of course, it is not easy to capture actual processes. By now, it is a manual procedure, and a costly

one, too: It takes 5 to 40 times the duration of an excerpt to extract and annotate a video excerpt. We

attempt to automate this as far as possible [10], but some operations (like thinking), qualities (like

source), or foci (like defects) are not likely to be ever automatically recognized. Without doubt, some

are difficult to judge even manually. After all, it is a kind of process re-engineering which requires

much knowledge about programming.

The scheme has been used to analyse defect injection scenes, i.e. the parts of programming sessions

which result in defective code. The aim is to discover typical patterns of coding behaviour,

circumstances, and indicators to describe those “dangerous” phases of programming [11], for example

Copy-Paste-Change [14] or Trial-and-Error episodes. Only nine non-trivial defect introductions have

been detected so far which is not enough to draw conclusions by now.

As to the application on discovering defect injection patterns some first hypotheses will be

investigated statistically. For example, on first sight it seems that Betterments are done (as well as

defects introduced) during periods of “chaotic programming”: when changing code locations often and

in changing order. It will be necessary to define relevant metrics based on the sequence of episodes.

Moreover, typical patterns of consecutive episodes may provide a higher level of abstraction and

annotation scheme. It may be possible to automate the detection, but more likely will provide some

form of human investigation of episode visualisations like outlined in section 5. Developing a useful

way to visualise the annotations will be crucial to serious qualitative analysis. Another effort will be to

semi-automate the annotation process itself. To obtain a critical amount of data for analysis, however,

most effort needs to be put in the actual annotation of more realistic coding sessions.

TeamEthno-online Issue 2, June 2006, 58-66

 66

References

[1] L. Prechelt, S. Jekutsch, P. Johnson: Actual Process: A Research Program. Technical Report B-

06-02, Inst. F. Informatik, Freie Universität Berlin, March 2006

[2] Project “Reisewissen” („Travelling Knowledge“) : http://reisewissen.ag-nbi.de/en (03/02/2006)

[3] ACM programming contest homepage: http://icpc.baylor.edu/icpc/ (03/02/2006)

[4] T. Lethbridge, S.E. Sim, J. Singer: Software Anthropology: Performing Field Studies in

Software Companies, http://citeseer.ist.psu.edu/263534.html (03/02/2006)

[5] Carolyn B. Seaman: Qualitative Methods in Empirical Studies of Software Engineering. IEEE

Trans. on Softw. Eng., 25 (4), July/August 1999, pp. 557-572

[6] A. von Mayrhauser, S. Lang: A Coding Scheme to Support Systematic Analysis of Software

Comprehension. IEEE Trans. on Softw. Eng. 25 (4), July/August 1999, pp. 526-540

[7] Jean-Michel Hoc et.al (ed.): Psychology of programming. Academic Press 1990

[8] Simon P. Davis: Models and theories of programming strategy. Int. Journal Man-Machine

Studies (1993) 39, pp. 237-267

[9] W. D. Gray, J. R. Anderson: Change-Episodes in Coding: When and how do Programmers

change their Code? Empirical studies of programmers: Second workshop 1987, pp. 185-197

[10] ECG homepage: http://projects.mi.fu-berlin.de/w/bin/view/SE/ElectroCodeoGram (03/02/2006)

[11] Research project on “Micro-process analysis for avoiding programming errors” homepage:

http://projects.mi.fu-berlin.de/w/bin/view/SE/ErrorHome (03/02/2006)

[12] Hackystat homepage: http://csdl.ics.hawaii.edu/Tools/Hackystat/ (03/02/2006)

[13] I. Burmistrov, A. Leonova: Do interrupted users work faster or slower? The micro-analysis of

computerized text editing task. In: J. Jacko and C. Stephanidis (Eds.) Human-Computer

Interaction: Theory and Practice (Part I) – Proceedings of HCI International 2003, Vol. 1.

Mahwah: Lawrence Erlbaum Associates, pp. 621-625

[14] M. Kim, L. Bergman, T. Lau, D. Notkin. An Ethnographic Study of Copy and Paste

Programming Practices in OOPL, Int. Symp. on Empirical Software Engineering, August 2004,

pp. 83-92

